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Abstract The study of the diversity of multivariate

objects shares common characteristics and goals across

disciplines, including ecology and organizational man-

agement. Nevertheless, experts have adopted somewhat

separate diversity concepts and analysis techniques, lim-

iting the potential for sharing and comparing across

disciplines. Moreover, while large and complex diver-

sity data may benefit from exploratory data analysis,

most of the existing techniques emphasize confirmatory

analysis based on statistical metrics and models. This

work aims to bridge these gaps. First, by cross com-

paring the analyses of species diversity, microbial di-

versity, and workgroup diversity, we introduce a frame-

work of diversity concerns aligned across the three ar-

eas. The alignment framework is validated and refined

by feedback from subject-matter experts. Then, guided
by the framework and theoretical information visual-

ization and visual analytics principles (as distinguished

from scientific visualization), we propose a unified tax-

onomy of common analytical tasks for exploration of

diversity.
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1 Introduction

Understanding diversity patterns and their causes and

consequences (processes) is one of the greatest chal-

lenges in ecology, both at the scales of species such as

plants and animals and of microorganisms, e.g., [19,36,

43, 15]. This problem is critical because diversity is an

important factor for the assessment of complex systems:

changes in biodiversity may influence the stability and

functioning of the ecosystem, e.g., [37, 28]. Although

the problem is shared by other disciplines, ecologists

might not be fully aware of the improvements poten-

tially gained from understanding diversity studies in

other arenas. For instance, researchers and managers

of human organizations are concerned with diversity of

work teams, e.g., [32, 20,5].

A common approach to understanding diversity pat-

terns and processes is hypothesis-driven or confirmatory

analysis that relies on rigorous statistical metrics and

tests of data observations [36, 18, 20, 62]. These tech-

niques may work well when hypotheses are falsifiable

and testable with reasonable metrics and tests. Oth-

erwise, the utility of the current approach diminishes

quickly when the number of diversity attributes un-

der investigation is large, multiple subsets of data are

involved, and/or hypotheses are not pre-established.

Still, indices of diversity have greatly dominated over

more direct exploration of diversity in studies of ecol-

ogy and human organizations. In addition, discipline-

specific metrics may preclude the understanding of how

diversity functions and how it could be characterized

similarly across disciplines.

Decades ago, Whittaker [69], Sanders [53], and Hurl-

bert [26] suggested that in addition to diversity indices,

ecologists should gauge diversity patterns by direct ob-

servation of data. Following this advice, visual represen-
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Fig. 1 Proposed visual-analysis process
of exploring diversity data. Each rectan-
gle indicates an analysis stage and each
arrow indicates a path the analyst can
take to navigate the stages. This work fo-
cuses on exploratory analysis tasks (the
orange rectangle), as distinguished from
data pre-processing or hypothesis testing
tasks. Image redrawn from [49].

.

Fig. 2 A model of visualization cre-
ation with four nested layers introduced
by Munzner [41] (left) and its applica-
tion in the context of diversity analysis
(right). This paper emphasizes the two
outer layers: (1) characterize the problem
in terms of diversity concerns and infor-
mation needs (“the framework”, Section
2) and (2) abstract the concerns into a
list of common analytical tasks (“the tax-
onomy”, Section 4) that can be accom-
plished with visual-analysis tools.

tations of data such as histograms and rank-abundance

plots [69] have been employed to communicate species

variety and abundance. Nevertheless, these techniques

supported a limited number of variables, with no inter-

action, and thus limited exploration capacities—perhaps

due to a lack of computational interfaces and tools at

that time. Recently, experts who study human organi-

zations have also suggested that configurations of work

team structure are important and have direct conse-

quences on team outcome processes [9]. Yet no tools

exist to enable direct investigation of team structure,

besides text- or table-based assessment of data.

Recently, visual analytics, “the science of analyti-

cal reasoning facilitated by interactive visual interfaces”

[63], offers a new, and powerful aid to the analytical rea-

soning of diversity patterns and processes in complex

data. By leveraging the human visual system, visual

analytics—a subfield of data visualization—provides a

visual gateway to the data, complementing existing di-

versity metrics and allowing users to explore data di-

rectly and iteratively prior to further statistical analysis

(Fig. 1). As distinguished from confirmatory analysis

which is centered around hypothesis testing, data ex-

ploration facilitates the generation of hypotheses and

insights into the data [64,3].

The visualization community has shown consider-

able interest in interactive visualization tools for ex-

ploring diversity in ecology and its subfield—microbial

ecology. Notably, there are tools designed to facilitate

understanding of (1) patterns of species distributions

in separate attributes, e.g., the EcoDATE tool [49], (2)

structures of microbial populations, e.g., the MicrobiVis

tool [13], and (3) taxonomic classification and struc-

ture, e.g., the TaxonTree tool [34]. Unfortunately, these

tools serve specific subsets of information needs that

are somewhat separated and not transferrable from one

to another. To our understanding, very little work has

focused on abstracting diversity analyses from various

fields to unified analytical tasks that target all facets of

diversity in multivariate data sets. By analytical task,

we mean one or a series of actions carried out by the tar-

get users on the data to fulfill an information need. An-

alytical tasks serve as prerequisites for designing visual-

analysis tools that in turn support those tasks (Fig. 2).

This paper identifies and answers the following two

research questions:

RQ1: How is analysis of diversity conceptualized and

aligned across the multiple fields that study it? More

specifically, what are the fundamental scientific ques-

tions and hypotheses of interest regarding the diversity

of multivariate objects?

RQ2: Given that analysis of diversity can be aligned

across the fields (RQ1), which common analytical tasks

are particularly useful in exploring diversity data?

In answering these questions, we draw upon our

lessons from designing diversity visualizations [47–50]

and provide two contributions: (1) an alignment frame-

work of diversity concerns (RQ1)—the orange outer-

most layer in Fig. 2 and (2) a classification/taxonomy

of analytical tasks for exploratory analysis of diversity

(RQ2)—the yellow layer in Fig. 2. Specifically, to an-

swer RQ1, we review, cross compare, and align diver-

sity concerns across the three areas of species diversity

(ecology), microbial diversity (ecology/ microbiology),

and workgroup diversity (organizational management).

By concerns, we mean elements of diversity that can be



Toward Unified Diversity Visual Analysis 3

conceptualized in a manner that transcends the three

areas and the type of question being asked. The aim of

the alignment framework is to set up a shared under-

standing between subject-matter experts and visualiza-

tion researchers in terms of common diversity-related

vocabulary and design considerations.

We also illustrate these concerns with several exam-

ples of commonly used visualization techniques. This

work emphasizes techniques that apply to datasets where

the objects of concern are described by abstract at-

tributes that do not necessarily have a natural map-

ping to 2D or 3D space. Thus, this work falls under

the field of Information Visualization (InfoVis) [59] as

opposed to Scientific Visualization (SciVis) that tends

to deal with objects with physical properties such as

surface location or density, that map naturally to 3D

space. While the two areas increasingly overlap under

the umbrella of Data Visualization [68], SciVis tech-

niques have been adopted by many related visualization

work for environmental science, including visualization

of geotechnical data [44], of hydrology data and mod-

els [52,66].

To address RQ2, we then translate these concerns

into analytical tasks that are well defined by existing

generic task taxonomies in visual analytics, e.g., [2, 3].

Simply put, while the diversity concerns are the vocab-

ulary of subject-matter experts that represent their in-

formation needs and transcend disciplinary boundaries,

the analytical tasks are the vocabulary of computer sci-

ence, or more specifically, of visual analytics that rep-

resent user requirements that can be met by design of

visual-analysis tools.

Our results aim to benefit various users. Subject-

matter experts can cross compare diversity concerns

and scientific findings as well as adopt analytical tasks

and visualization techniques. Further, visualization de-

signers and researchers have common vocabulary and

abstractions for designing and evaluating different di-

versity visual-analysis tools. Finally, we are aware that

the proposed framework and taxonomy are by no means

Table 1 Alignment of diversity concerns across the analyses of species diversity (ecology), microbial diversity (microbial ecol-
ogy and microbiology), and workgroup diversity (organizational management) summarized using terminology that is common
to or distinct between the disciplines. Table cells marked with “–” indicate missing concerns that may not yet be studied in
the corresponding fields. The last column suggests how the data behavior for each of the concerns (if applicable) should be
characterized.

Species Diversity Microbial/Genomic
Diversity

Workgroup
Diversity

Data Behavior
Characteriza-
tion

Typical Unit of
Study

Community
(α-diversity)

Microbe Sample
(α-diversity)

Work team N/A

Typical Unit of
Observation

Individual of known
species or biomass

Operational Taxo-
nomic Units with
abundance (classified
from microbe sample)

Individual person N/A

Diversity
Components
concerning Separate
Attributes

Variety and
Abundance

Variety and
Abundance

Variety
Distributions
MetricsNiche Separation – Separation

Dominance/Rarity Dominance/Rarity Disparity

Diversity
Components
concerning
Interactions among
Attributes

Functional Diversity Functional Diversity Faultines/Subgroups
Distributions
Clusters
Metrics

Taxonomic Diversity Taxonomic Diversity –

Distributions
Clusters
Hierarchies
Metrics

Diversity in Space
and Time

β-diversity or
turnover; γ-diversity

β-diversity or turnover Between-unit
diversity;
Macro-faultlines

Spatial &
Temporal
Characterization
Metrics

Diversity as
Responder (Cause of
Diversity)

Landscape patterns
(Climate, Distur-
bance, Land Use)

Environmental
patterns or
Biological patterns
(Human body)

Organizational
factors (e.g., culture,
recruitment)

Correlations/
Regressions
Metrics

Diversity as Driver or
Moderator (Effect of
Diversity)

Ecosystem functions
and processes

Eco or Human sys-
tem functions and pro-
cesses

Workgroup functions
and outcomes
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comprehensive considering the complexity of ecologi-

cal and human systems and their interactions. There-

fore, we expect this work will stimulate further discus-

sions regarding validation and improvement to both the

framework and the taxonomy.

2 Alignment of Diversity Concerns

To answer RQ1, we propose a framework for aligning

diversity concerns (“the framework”) across the analy-

ses of species diversity in ecology, microbial/ genomic

diversity in microbial ecology, and workgroup diver-

sity in organizational management. By framework, we

mean a set of thoughts, theories, and approaches that

are accepted by subject-matter experts as the guiding

principles for characterizing the problem. The concerns

of interest include (1) characteristics of diversity data

(Section 2.1), (2) description of diversity patterns (Sec-

tion 2.2), and (3) hypotheses regarding the causes and

consequences of diversity (processes) (Section 2.3). The

framework is summarized in Table 1.

2.1 Data Characteristics

Ecologists typically make a distinction between two types

of phenomena concerning diversity: (1) the description

of diversity (diversity patterns) and (2) the causes and

consequences of diversity (diversity processes) [36]. To

understand these phenomena, a common approach is to

undertake scientific studies. Specifically, experts collect

data and make inferences about the underlying phe-

nomena based on data behaviors (or data patterns).

Data behavior is defined as a set of inherent features

specific to a (sub)set of data observations considered as

a whole as opposed to individual observations [3]. For

instance, a data behavior may manifest itself as notions

of distributions, clusters, or trends.

Diversity data are samples of independent observa-

tions collected from the population of interest within

one or multiple units of study (Table 1, Rows 1 and 2).

In workgroup diversity, a work team represents a typi-

cal unit of study while an individual person represents a

unit of observation (or measurement) [20,62]. Compar-

atively, in species diversity, a typical unit of observation

is an individual of a known species such as animals and

plants collected in a community or assemblage [36]. A

typical unit of study of microbial community diversity is

a biological sample (i.e., biological specimen) that con-

tains multiple so-called Operational Taxonomic Units

(OTUs), which are a close approximation to microbial

species (as opposed to plant or animal species) with

corresponding abundances [43,15]. The identification of

OTUs is performed by extracting DNA from cells and

then sequencing DNA from the biological sample [15].

Each unit of observation may be characterized by

multiple mix-typed and, in some cases, hierarchical char-

acteristics (attributes) necessary for gauging diversity

of the corresponding unit of study and its role in the

examined ecological or human system. For instance, a

team member may be characterized by multiple demo-

graphic and non-demographic attributes; an individual

of a known species, whether macrobiotic or microbi-

otic, may be described by multiple known characteris-

tics, e.g., size, food type, and physiology, and hierar-

chical levels of Linnaean taxonomy, e.g., family, genus,

and species. In addition, observations can be collected

in space and time (independent variables) and asso-

ciated with system process factors, e.g., team perfor-

mance or ecosystem functions. In essence, diversity data

sets are mix-typed, multivariate, and in many cases, hi-

erarchical, spatiotemporal, and large (up to thousands

of records/observations).

2.2 Diversity Patterns

Diversity patterns are an overarching concept that in-

cludes various and related components adopted by the

three areas of interest but usually under slightly differ-

ent terms, especially between species/microbial diver-

sity and workgroup diversity. The components can be

loosely classified based on the ideas that (1) diversity is

attribute-specific—that is, attributes are not treated as

equal and (2) one or multiple diversity attributes can

be investigated either separately (i.e., one by one) or si-

multaneously [32,36,20]. These two important ideas are

captured in Table 1, Rows 3 and 4 and demonstrated

in this section.

2.2.1 Diversity Patterns concerning Separate

Attributes

This section describes the common components of di-

versity concerning separate attributes, demonstrates how

they are aligned across the three areas, and character-

izes and gives examples of visualizations that depict

data behaviors (Table 1, Row 3). For example, con-

sider the investigation of biodiversity at species level

only. Species diversity (or α-diversity) is “the variety

and abundance of species in a defined unit of study”,

as defined by Magurran [36]. This definition empha-

sizes the two main components and corresponding met-

rics of richness of variety and evenness of abundance of

species (Fig. 3). Similarly but at the genomic level, mi-

crobial community diversity also concerns variety and

abundance of microorganisms in a community. With
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Fig. 3 Illustration of species richness and evenness. Each
icon represents an individual of a known species (e.g., insects).
Species richness refers to the number of different species rep-
resented in a unit of study and species evenness concerns the
degree to which the respective species abundances are simi-
lar to one another, e.g., a highly even distribution has equal
numbers of individuals of all represented species.

respect to data behaviors, in addition to diversity met-

rics, richness of variety and evenness of abundance are

typically characterized by the shapes of distribution, as

depicted by a rank-abundance curve in Fig. 4.

Similar to species diversity, a widely accepted defini-

tion of workgroup diversity in separate attributes is also

centered on the generalization of diversity as distribu-

tions. The definition is described as “the distribution of

differences among the members of a unit with respect

to a common attribute, X, such as tenure, ethnicity,

conscientiousness, task attitude, or pay” [20].

In addition, workgroup diversity is explicitly attribute-

specific. Depending on the attributes under investiga-

tion, the experts conceptualize diversity not only as

variety but also as separation and disparity, as intro-

Fig. 4 Rank abundance curve (with logarithmic scale) show-
ing the evenness of moth species in the moth dataset [40].
The technique, which is limited to a single attribute, is a
variation of the histogram in which species are ranked from
most to least abundant and then plotted along the x-axis.
‘A’ shows the common moths, ‘B’ shows the rare moths, and
‘C’ shows the common through rare moths. Note that ‘B’
excludes extremely rare moths because they do not provide
enough information to identify the diversity and abundance
of the respective moths. Image taken from Pham et al. [48].

duced by Harrison and Klein [20]. Variety represents

differences in kind or category, e.g., different skill sets,

and reflects information in the unit. Separation repre-

sents differences in position or opinion and is consid-

ered a horizontal difference between members of a unit.

For instance, different cultural values of members rep-

resent team separation. Disparity represents differences

in concentration of valued social assets or resources and

is considered a vertical difference between members of

a unit. For example, difference in pay among members

may create disparity in a team. Disparity thus reflects

differences in possession.

While these diversity types have different names

conceptually, from an analysis point of view, their pat-

Fig. 5 Illustration of the three types of
diversity within work teams and the cor-
responding shapes of distributions for the
three levels of diversity: minimum, mod-
erate, and maximum. Each of the icons
represents a team member. Examples
of distribution shapes include uniform
distribution depicting maximum variety,
bimodal distribution–maximum separa-
tion, and skewed distribution–maximum
disparity (third column from the left).
Image reused with permission from Har-
rison and Klein [20]. c©2007, Academy of
Management.
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terns differ only in the shapes of the distribution of in-

terest for minimum, moderate, and maximum diversity

(Fig. 5). These shapes of distributions are in turn em-

pirically associated with different outcomes for the ex-

amined unit of study [20].

Interestingly, ecologists also discuss species domi-

nance and niche separation, which correspond well to

disparity and separation in management if these com-

ponents are considered in separate attributes. Species

dominance refers to the degree to which a species is

more numerous than others are or makes up (or pos-

sesses) more of the biomass, thus representing a vertical

difference in makeup (as in disparity) [4, 17, 16]. Niche

separation is the process of naturally partitioning com-

peting species into different patterns of resource use or

different niches so that they do not out-compete each

other [33]. For instance, food type of animals could be

considered as a separation attribute: carnivore (meat

eater) and herbivore (plant eater) may represent two

extreme ends of the food type spectrum; for microbes,

it might be autotrophic metabolic lifestyle compared to

a heterotrophic metabolic lifestyle.

In all, we argue that when diversity is considered

in separate attributes, the concept of species diversity

matches well with that of workgroup diversity in which

team members equate to individuals of species (or their

equivalents such as OTUs). These components are cen-

tered on the generalization of diversity as distributions.

Furthermore, it is important that the analysts choose

the correct conceptualization, e.g. type of diversity, and

apply the appropriate data characterization, e.g. statis-

tical metrics or shapes of distribution. To summarize,

we propose the following consideration for characteriz-

ing data behavior of diversity patterns in separate at-

tributes:

Data Behavior Characterization - Consid-
eration 1. From an analysis point of view, when

diversity patterns are considered in separate at-

tributes, depending on the types of diversity un-

der consideration, e.g., variety, separation, and

disparity, the corresponding data behaviors are

typically characterized by the shapes of distri-
butions of observations in separate attributes,

in addition to summary statistics such as diver-

sity metrics. If time and space are involved, the

data behavior should also consider how the dis-

tribution patterns and summary statistics vary

over time and space.

To demonstrate how this consideration may bene-

fit design of interactive visualization techniques, con-

sider Fig. 6, which depicts the multiple histogram rep-

resentation of the moth diversity and abundance data

set supported by the EcoDATE tool [49]. Consideration

1 emphasizes the characterization of data behavior as

shapes of distributions in separate attributes. Accord-

ing to information visualization design principles [35], a

histogram is well suited to showing the distribution of

objects within an attribute. Further, placing histograms

vertically side-by-side in parallel [27] aims to convey a

holistic object distribution over multiple attributes. Fi-

nally, the characterization of distributions (Considera-

tion 1) is further assisted by interaction features. For in-

stance, users can sort bins within a histogram by abun-

dances to form the rank-abundance curve (e.g., green

histogram LEP NAME); annotate histograms with dif-

ferent colors to distinguish attributes of different diver-

sity types (i.e., variety, separation, and disparity); sub-

set data by time (COLLECT YEAR) or space (TRAP ID)

to see how distribution patterns vary over time and

space.

2.2.2 Diversity Patterns concerning Interactions

among Multiple Attributes

Diversity definitions that look at the diversity of each

attribute separately have a limitation. They do not take

into account the interaction among attributes. Consider

an example of two teams of employees that have four

members each in Table 2. While it is obvious that Team

2 is divided into more subgroups, the current definition

concludes that both teams are at the same level of over-

all diversity with respect to gender and age—that is,

in each of the two teams, members are uniformly dis-

tributed in both gender and age. To address this limi-

tation, here we discuss diversity patterns that consider

interactions among multiple attributes. In this regard,

we also find parallel components across the three areas

(Table 1, Row 4). This section describes and demon-

strates how the common diversity components can be

aligned and gives examples of visualizations that depict

the corresponding data behaviors of interests.

Functional diversity is recognized by ecologists and

microbiologists as different roles or functions played

by species (or their equivalents) in communities and

ecosystems. These roles can be determined based on the

composition of multiple functional traits such as rooting

Table 2 Employee Diversity Example. Each of the two teams
has four members.

Team 1
Female, over 50 Male, under 50
Female, over 50 Male, under 50

Team 2
Female, over 50 Male, over 50
Female, under 50 Male, under 50
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Fig. 6 The multiple histogram representation of common moths. The visualized attributes from left to right are LEP NAME
(moth scientific name including genus and species), LEP GENUS, LEP FAMILY, FOOD PLANT, TRAP ID, HABITAT,
ELEVATION, WATERSHED, COLLECT YEAR, COLLECT PERIOD, TEMPERATURE. Note that LEP is short for Lep-
idoptera (moth). In each of the histograms, the bars are pointing to the right (in contrast to the familiar upward-pointing
display). The structure of the moth data set is described in [48]. The interactive version of the visualization is available at
http://purl.oclc.org/ecodate/commonmoth.

depth and maximum growth rate of plants [45]. Tech-

nically, the ideas are (1) to cluster different species (or

their equivalents) present in a unit of study into dif-

ferent functional groups based on composition of these

traits, (2) to derive, for example, the functional diver-

sity (FD) metric [45] (Fig. 7), and (3) finally, to quantify

and predict the associations between the functional di-

versity metric and other system processes. Ramette [51]

provides an in-depth review of cluster analysis tech-

niques for microbial diversity data.

Furthermore, species and OTUs are inherently hier-

archical—that is, species are grouped into taxa. There-

fore, multiple traits or attributes under investigation

might be extended to taxonomic organization such as

species, genus, and family, resulting in taxonomic diver-

sity (diversity across taxa) and corresponding metrics

such as taxonomic distinctness [67]. Fig. 8 illustrates an

example of two hypothetical units of study whose diver-

sity levels are determined by not only species level but

also as composition of higher taxa. From an analysis

perspective, the hierarchy of different species present

is the primary data behavior of interest for taxonomic

diversity.

It is important to note that functional diversity and

taxonomic diversity also concern richness of variety and

evenness of abundances within or between clusters, e.g.,

functional groups [46], making the generalization of di-

versity as distributions still applicable. As an example,

while the dendrogram alone in Fig. 7 does not con-

sider evenness of observations in each of the four func-

tional groups, a heatmap is commonly used along with

a dendrogram to communicate evenness of abundances

as demonstrated in Fig. 9.

Interestingly, in parallel with functional diversity

in ecology, the diversity faultlines concept in organi-

Fig. 7 A dendrogram representation demonstrating how
seven species 1-7 are assigned to four functional groups based
on hierarchical clustering of the species across multiple func-
tional traits. The four functional groups include {1}, {2, 3},
{4, 5}, {6, 7}. The dashed line indicates an arbitrary stop-
ping condition for the clustering process. Image reused with
permission from Petchey and Gaston [45]. Copyright c©2002,
John Wiley and Sons.
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Fig. 8 A node-link diagram (tree) representation of two hy-
pothetical units of study (e.g., assemblages) with the same
level of species richness (i.e., five species represented) but dif-
ferent levels of taxonomic diversity when higher taxa such as
genus and family are considered; unit of study (a) is more
diverse than unit of study (b). Image reused with permission
from Magurran [36]. Copyright c©2003, John Wiley and Sons.

zational management, which is also derived from multi-

variate clustering, concerns subgroups or clusters formed

in a work team based on alignment (or composition)

of multiple demographic or non-demographic charac-

teristics of members, as first introduced by Lau and

Murnighan [32]. Fig. 10 depicts an example of how

the faultlines concept is applied to a work team. Just

as ecologists studying functional diversity, management

experts are also interested in (1) structure of subgroups

with respect to the number of subgroups, evenness of

subgroups, and subgroup variety and abundance; and

(2) faultlines or attributes in which subgroups are sep-

arable or far apart from each other [5, 9, 50]. The goal

is not necessarily to identify objects that cluster to-

gether but to determine how attribute space is divided

or shared across the attributes of interest by clustered

subgroups. Surveys of various faultline concerns and

metrics can be found in [62] and [38].

In all, we argue that the concept of faultlines in or-

ganizational management could be matched with that

of functional diversity in ecology from an analysis per-

spective. Both are derived from multivariate cluster anal-

ysis. Therefore, appropriate operationalizations of the

concepts in terms of diversity metrics or data behaviors

of interest could potentially be exchangeable. We sum-

marize a consideration for characterizing data behav-

ior of diversity patterns concerning interactions among

multiple attributes as follows:

Data Behavior Characterization - Consid-
eration 2. From an analysis point of view, when

diversity patterns involve interaction among mul-

Fig. 9 A hybrid representation of dendrogram
and heatmap used to depict the taxonomic di-
versity of archaeal and bacteria phyla along
with corresponding abundances detected in sev-
eral samples of a microbial diversity study. The
term phylotype refers to an OTU that has been
detected in a sample but for which there may
be no microbe cultured. Image reused with per-
mission from Briggs et al. [7]. Copyright c©2011,
American Society for Microbiology.
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tiple attributes simultaneously, the correspond-

ing data behaviors are typically characterized by

the shapes of distributions of observations

that are grouped into clusters across multiple

attributes, in addition to summary statistics such

as diversity metrics. The term cluster may re-

fer a functional group of species in an ecological

unit of study, e.g., communities, or a subgroup

of people in an organizational unit of study, e.g.,

work teams; clusters may also represent different

units of study under comparison. In addition,

in some cases, the data behavior of interest is

the hierarchical relationships if the patterns

of interest concern taxonomic organization, e.g.,

taxonomic diversity, or hierarchical clustering.

If time and space are involved, the data behav-

ior should also consider how these distributions,

clusters, and/or hierarchies as well as correspond-

ing summary statistics vary over time and space.

Fig. 11 and Fig. 12 demonstrate a multiple linked

stacked histogram design (HIST) of diversity faultlines

in work teams that follow closely Consideration 2 [50].

First, to depict distributions of observations across at-

tributes, the design reuses multiple histograms (Fig. 6).

Then, to help discern whether distributions of different

subgroups overlap or separate along an attribute space,

bars for each of the subgroups are stacked within each

bin (Fig. 12). Finally, distinct color hues on a white

background are used to differentiate stacked subgroups.

Following this design, the holistic structure of each of

the subgroups is conveyed across attributes. In addi-

tion, a total separation of subgroups at a nominal at-

tribute is indicated by distinct subgroups (or distinct

colors) occupying distinct positions along the vertical

axis. At a numeric or ordinal attribute, total separa-

tion further demands that these distinct positions—

including ones without objects (zero-length bars)—are

adjacent. The visual representation in Fig. 11 makes

it obvious that the two subgroups formed in a group

of baseball players are totally separated in all four at-

tributes under investigation; the team visualized in Fig.

12 represents a less extreme example of faultline sep-

aration in a work team: the three subgroups are sepa-

Fig. 10 An example of how a faultline metric
[5] is used to cluster a group of starting pitchers
of an MLB team into two subgroups (subgroup
1 and subgroup 2) based on the similarity of
group members across the attributes of inter-
est: AGE, COUNTRY (of origin), RACE, and
MLB TENURE (in years). The table does not
clearly show how the subgroups (or clusters) are
separable or far apart across the attributes un-
der investigation. Fig. 11 depicts a multivariate
visualization technique that addresses this is-
sue. Data courtesy of Katerina Bezrukova and
Chester Spell.

Fig. 11 Multiple linked stacked histograms
(HIST) of the group of starting pitchers in Fig.
10. In all four attributes of COUNTRY, RACE,
AGE, and MLB TENURE, the two subgroups
(subgroup 1 and subgroup 2) are totally sep-
arated. In addition, the design automatically
computes and draws connecting dashed lines to
reveal the holistic separation between the two
subgroups. Image reused with permission from
Pham et al. [50]. Copyright c©2013, Elsevier.
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Fig. 12 Multiple linked stacked his-
tograms (HIST) of an example team of
18 members clustered into three sub-
groups: subgroup 1 (smallest), subgroup
2, and subgroup 3 (biggest). Along ETH-
NICITY, EDUCATION, and EXPERI-
ENCE, the three subgroups occupy dif-
ferent subsets of values; therefore, the
subgroups are totally separated. Along
GENDER and AGE, the three subgroups
overlap. Image reused with permission
from Pham et al. [50]. Copyright c©2013,
Elsevier

Fig. 13 Multiple linked stacked histograms (HIST) of two groups (or clusters) of common moths and rare moths. Bar lengths
are scaled according the logarithm with base 10 because the common moths are significantly more abundant than the rare
moths. The view helps ecologists hypothesize that the two groups may be functionally separated in terms of species, genus,
and family as well as food plant—attribute axes 1-4 from left to right. However, the two groups overlap in the other attributes.
The structure of the moth data set is described in [48]. Image reused with permission from Pham et al. [50]. Copyright c©2013,
Elsevier
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rated along several attributes but the members overlap

in other attributes.

To further show that analyses of team faultlines and

ecological functional diversity can be aligned, we also

visualize the two groups of common moths and rare

moths from the moth data set using HIST (Fig. 13).

To some extent, the two groups of moths represent two

functional groups in their respective communities. The

visualization helps reveal the possible separation be-

tween the two groups with respect to species, genus,

and family as well as food plant: while common moths

are mostly conifer-feeders (i.e., gymno), rare moths are

mostly hardwood and herb feeders (Fig. 13).

2.3 Diversity Processes

Thus far, we have focused on diversity patterns, how-

ever these patterns are causally associated with other

phenomena in the system under investigation; this sec-

tion describes the component of diversity as cause or

consequence, demonstrates how these are aligned across

the three areas, and characterizes and gives examples

of visualizations that depict data behaviors (Table 1,

Rows 6 and 7).

Across the three examined areas, we can find paral-

lels in the roles of diversity as responder (cause), driver

(effect), or moderator (effect). For instance, ecologists

refer to positive effects of diversity such as sustainabil-

ity and resilience in an ecological system (e.g., [19, 4])

while organizational management experts seek innova-

tion and flexibility, just to name a few (e.g., [20,65,39]).

The causes of diversity in ecology are related to climate,

disturbance, and land use while in organizational man-

agement they are organizational factors such as culture

or recruitment.

During the data exploration, there are two main ap-

proaches to making sense of diversity processes. First,

the analyst may be able to make inferences about the

diversity processes from direct observation of diversity

patterns considering that the causal links are well un-

derstood [3, 13, 48]. For example, ecologists found that

the richness of species tends to be higher in lower lat-

itudes than in higher latitudes [24]. Second, based on

information needs of users and availability of process

data (e.g., environmental factors or performance), vi-

sual analysis tools may support users in examining the

associations between observed diversity patterns and

system processes directly via correlation and regression

analyses, before further statistical analysis. Note that

regression and correlation indicate only how or to what

extent data variables are associated with each other. To

make conclusions about the causal relationships, anal-

ysists may need to involve their domain knowledge. We

introduce another consideration for characterizing data

behavior of diversity processes as follows:

Data Behavior Characterization - Consid-
eration 3. From an analysis point of view, the

data behaviors of diversity processes are typically

characterized by how diversity patterns and sys-

tem processes are correlated, if the observed di-

versity patterns are investigated as a driver or

responder; or by how diversity patterns moder-
ate correlations between system processes, if the

observed diversity patterns are investigated as a

moderator. If time and space are involved, the

data behavior should also consider how these cor-

relations/regressions vary over time and space.

Note that following Consideration 1 and 2, di-

versity patterns and system processes may be char-

acterized by corresponding data behaviors, e.g.,

distributions, clusters, hierarchies, or summary

statistics, e.g., diversity metrics.

To demonstrate the relevance of this consideration

to designing visual representations, we present two ex-

amples from ecology and organizational management.

According to information visualization guidelines, scat-

ter plots and line charts are effective for communicat-

ing relationships between two variables [55]. In Fig.

14, scatter plots are used to demonstrate possible cor-

relations between measures of species richness, func-

tional diversity, and ecosystem processes, e.g., reten-

tion of nitrogen, total aboveground biomass. In Fig.

15, a line chart is used to depict the role of diver-

sity faultlines as “moderator”. These two static exam-

ples, which are taken from research papers, serve the

primary purpose of explaining the correlations and re-

gressions found from hypothesis testing. Nevertheless,

the techniques, if equipped with appropriate interaction

features such as highlight/select and filter/subset [23],

would be still applicable for enabling exploration of the

correlations. On a related note, in both examples, the

examined diversity patterns and system processes are

quantified by summary statistics, as opposed to more

descriptive data behaviors such as distributions or clus-

ters, which is demonstrated in [48].

2.4 Summary of the Diversity Concerns

In answering the first research question RQ1, we syn-

thesize a variety of diversity concerns that represent

information needs aligned across the three areas into a

framework. There are two key points. First, exploratory

analysis of diversity patterns aims to reveal the descrip-

tive structure of multivariate objects of interest, e.g.,
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Fig. 14 An example of scat-
ter plots used to illustrate possi-
ble relationships between species
richness, functional diversity met-
ric, and ecosystem processes. Data
points may represent unique units
of study or a unit of study repeat-
edly measured over time. The two
rows (a, b, c) and (d, e, f) de-
pict how the relationship between
ecosystem process and species rich-
ness can be determined by a com-
bination of the relationships be-
tween ecosystem process and func-
tional diversity and between func-
tional diversity and species rich-
ness. Image reused with permis-
sion from Petchey and Gaston [46].
Copyright c©2006, John Wiley and
Sons.

species individuals, team members, in units of study

of interest, e.g., communities, work teams. Such struc-

ture may manifest itself in the observed data as distri-

butions, clusters, and/or hierarchies (Considerations 1

and 2). Second, exploration of diversity processes con-

cerns the existence of the causal relationships between

the diversity patterns and system processes. Such rela-

tionships are typically characterized by correlations and

regressions among values of corresponding data vari-

ables (Consideration 3).

Moreover, conceptualization of diversity varies with

different compositions of diversity attributes. Based on

research questions of interest and data collected, it be-

comes very important that experts choose correct diver-

sity concerns and apply the appropriate operationaliza-

tion such as statistical metrics or visual representations

Fig. 15 An example of a line chart used to depict the role
of diversity faultline as “moderator”: psychological distress
of team members was positively related to their perceived
injustice in the team (the dashed line); strong group faultlines
weakened that positive relationship (the solid line). Image
reused with permission from Bezrukova et al. [6]. Copyright
c©2010 Wiley Periodicals, Inc.

of data behaviors such as those in Table 1, Column 5.

The process could be iterative and exploratory (Fig.

1). We accompany each of the diversity concerns with

selected examples of appropriate visualizations. By dis-

cussing these examples, we wish to emphasize how vi-

sualization design should be guided by the information

needs of users that can be abstracted into correspond-

ing data behaviors.

Motivations for the taxonomy of analytical tasks.

The alignment framework is only the first layer in the

nested model of visualization creation process (Fig. 2).

The framework does not yet illuminate possible anal-

ysis processes of these aligned diversity concerns. For

instance, investigation of diversity patterns typically

precedes that of diversity processes. In other scenarios,

ecologists may wish to experiment with different com-

binations of functional traits and different clustering al-

gorithms when investigating functional diversity; man-

agement researchers may wish to conceptualize the ‘age’

attribute as variety in one case (age comes with expe-

rience) and as separation in other cases (age represents

generation gaps). These analytical tasks and processes

represent user requirements that can be met by design

of visual representation and interaction techniques (the

third layer in Fig. 2).

Moreover, the framework, which is expressed in the

vocabulary of the domains, e.g., richness, evenness, func-

tional diversity, faultlines, must be translated into the

vocabulary of visual analytics, e.g., characterize distri-

bution, clusters, etc. (Fig. 2). The aim is to establish a

shared understanding between subject-matter experts

and visualization researchers.

Next, to answer research question RQ2, we review

existing generic taxonomies of analytical tasks (Section

3) and introduce a specific task taxonomy for diversity



Toward Unified Diversity Visual Analysis 13

Table 3 Ten low-level analytical tasks by Amar et al. [2] followed by the three additional tasks of Characterize Hierarchy,
Annotate, and Fit Models/Metrics. The tasks are described in the context of diversity analysis.

Task Description Example
Retrieve Value Given a set of observations, find attributes of those

observations
What is the tenure of a given player in
a given baseball team (Fig. 10)?

Filter/Subset Given some concrete conditions on attribute values,
find observations satisfying those conditions.

What are the moth observations col-
lected in HJA Forest in 2008 (Fig. ??)?

Compute Derived
Value/Metric

Given a set of observations, compute an aggregate
numeric representation of those observation.

What is the faultline level of a given
team (Fig. 10)?

Find Extremum Find data observations possessing an extreme value
of an attribute over its range within the data set.

What is the moth species with highest
abundance (Fig. 4)?

Sort Given a set of observations, rank them according to
some ordinal metric.

Sort the moth species observations by
abundances (Fig. 4).

Determine Range Given a set of observations and an attribute of inter-
est, find the span of values within the set.

What is the age range of members in
a given team (Fig. 11)?

Characterize
Distribution

Given a set of observations and an attribute of inter-
est, describe the distribution of that attributes values
over the set.

What is the tenure distribution of
members in given team (Fig. 11)?

Find Anomalies Identify any anomalies within a given set of observa-
tions with respect to a given relationship or expecta-
tion, e.g., statistical outliers

Are there any rare moth species (Fig.
4)?

Characterize
Clusters

Given a set of observations and multiple attributes of
interest, find clusters of similar attribute values.

Are there functional groups of trees
with similar traits (Fig. 7)?

Correlate Given a set of observations and two attributes, deter-
mine useful relationships between the values of those
attributes.

Is there a correlation between species
richness, functional diversity, and
ecosystem processes (Fig. 14)?

Characterize
Hierarchy

Given a set of data observations and hierarchy-based
attributes, describe the hierarchical classification of
the set over the attributes

What is the hierarchy of species in a
unit of study (Fig. 8)?

Annotate Note or distinguish among attributes or observations
based on their common or user-defined characteristics

Annotate ’age’ attribute as variety or
as separation.

Fit Models/Metrics Given a set of observations, fit a statistical or compu-
tational model to those observations—usually in the
forms of visual indicators such as lines or colors.

Fit a specific distribution curve to the
data (i.e., dash line on the data his-
togram)

analysis unified across ecology and organizational man-

agement (Section 4).

3 Assessment of Existing Generic Taxonomies

of Analytical Tasks

Design of our taxonomy of analytical tasks was informed

by existing generic task taxonomies in the fields of in-

formation visualization and visual analytics. In this sec-

tion, we assess applicability of a subset of relevant tax-

onomies to diversity analysis. More thorough reviews of

existing task taxonomies can be found in [2] and [3].

To guide the design of information visualization tools,

Shneiderman [57] proposed the now well-known visual

information seeking mantra “overview first, zoom and

filter, then details on demand” followed by a classifica-

tion of corresponding analytical tasks. The mantra and

tasks are potentially useful to guide analysis strategies.

Nevertheless, the tasks are somewhat driven by the tool

capabilities, e.g., support of zoom and filter features,

and there are no explicit mappings between the tasks

and specific information needs in the context of diver-

sity studies, e.g., what is the purpose of overview or

filter?

Following a different approach based on user ana-

lytical activities when using visualization tools, Amar

et al. [2] introduced a taxonomy of ten low-level tasks

(top 10 rows of Table 3). Applied to diversity analysis,

these tasks, while not necessarily comprehensive, are

relevant as building blocks since they aim to capture

fundamental analytical operations, e.g., filter/subset,

sort, characterize distribution. Nevertheless, to be more

useful, the low-level operations need to be coupled with

specific high-level information needs, e.g., which com-

ponents of diversity require the tasks of characterizing

distributions, hierarchies, and/or clusters?

Our proposed taxonomy is further motivated by the

work of Andrienko and Andrienko [3], who introduced

a classification of tasks strongly based on information

needs of analysts and tied closely to spatiotemporal

data. In their framework, a task is defined as a query to

find the unknown information (target) corresponding to

the specified or known information (one or more con-
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Fig. 16 General outline of the classification of analytical
tasks proposed by Andrienko and Andrienko [3]. Image re-
drawn from [3].

straints). The target represents data behaviors of inter-

est such as distributions, clusters, and/or correlations

fulfilled by one or many constraints such as popula-

tion, space, and time. The classification, whose general

outline is illustrated in Fig. 16, makes a distinction be-

tween the two classes of task: elementary tasks—which

concern individual elements of data, e.g., what is the

height of a given tree measured in a given date?, and

synoptic tasks—which involves data behaviors in a set

or subset of data as a whole, e.g., what is the shape of

distribution of moth species caught in a given date and

location? Synoptic tasks are further classified into de-

scriptive (e.g., characterize distributions) and connec-

tional (e.g., characterize correlation) tasks. Since the

classification presents high-level analytical tasks, it can

potentially serve as a generic framework for building

a task taxonomy for field-specific needs like diversity

analysis.

4 A Unified Task Taxonomy for Exploratory

Diversity Analysis

While the generic task taxonomies do not necessarily

consider or readily support specific tasks in diversity

analysis, they serve as a framework and building blocks

for our proposed unified task taxonomy (RQ2). In fact,

our taxonomy offers an application, combination, and

extension of the taxonomy of data-centric queries by

Andrienko and Andrienko [3] and the analytic low-level

operations by Amar et al. [2] in the context of a specific

analysis. Fig. 17 outlines our proposed taxonomy.

The taxonomy can be viewed at three levels of or-

ganization (or abstraction), representing the reasoning

process of transforming information needs into knowl-

edge and insights via analytical tasks. An information

need starts in an abstract form of synopsis (Generic

Level), then is realized with specific queries on diver-

sity patterns and processes in the analyst’s mind (Data-

Centric Level), and finally can be achieved with low-

level operations on appropriate analysis tools (Analytic

Low Level). The following subsections describe each of

the three levels.

4.1 Generic-level Tasks

At the generic and also highest level, the taxonomy con-

siders only synoptic tasks (Fig. 17, top orange level)

as opposed to both elementary and synoptic tasks as

in Andrienko and Andrienko’s framework [3] (Fig. 16).

We made that decision based on the understanding that

diversity patterns and processes concern behaviors of

(sub)sets of observations as a whole as opposed to indi-

vidual data elements (Table 1). While specific individ-

ual observations, for instance, rare or extreme observa-

tions, may be of interest to researchers, these observa-

tions are usually assessed in relation to other (sub)sets

of observations and are still considered as a whole. Also,

the value of a visualization typically lies in its capacity

to uncover patterns or behaviors in data as a whole.

Investigation of individual observations may be better

served by raw tables coupled with database queries.

4.2 Data-centric Queries

Decomposed from synoptic tasks, data-centric queries

(Fig. 17, middle green level) encompass specific infor-

mation needs regarding building, detecting, or compar-

ing diversity patterns and processes as presented in the

alignment framework (Table 1). To some extent, pat-

terns and processes match the descriptive and connec-

tional tasks in Andrienko and Andrienko’s framework

[3] (Fig. 16). At this level, we also adopt their definition

of task as query, which consists of two parts: one target

(unknown information) and one or many constraints

(known information).

Diversity Patterns. These queries aim to gain knowl-

edge into diversity patterns. The main objective is to

characterize data behaviors (targets) as distributions,

hierarchies, clusters, or summary statistics, following

the three considerations. The primary constraint is pop-

ulation, which is represented by collected samples of

independent observations characterized by multiple at-

tributes. In addition, data samples could be collected in

the context of space and time, two additional secondary

constraints. For example, information needs regarding

functional diversity in ecology as well as faultlines in or-

ganizational management may involve building, detect-

ing, or comparing distributions of clusters of data obser-

vations (targets) collected from a specific population—

and in some cases—in space and time (constraints) (Con-

sideration 2, Section 2.2.2).
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Fig. 17 Proposed task taxonomy
for exploratory analysis of diver-
sity organized at three levels of ab-
stractions: (1) Generic Tasks, (2)
Data-centric Queries, and (3) Low-
level Analytical Operations. Ver-
tical solid arrows represent how
the tasks in an upper level can be
mapped to one or many tasks in a
lower level. Horizontal dashed ar-
rows suggest the workflow between
tasks within the same level.

Diversity Processes. These queries examine the sci-

entifically meaningful relationships between diversity

patterns and system processes. Diversity patterns can

play multiple roles in such causal relationships: diver-

sity as driver, as responder, and/or as moderator (Ta-

ble 1). These roles are characterized by the correlation

between data behaviors of diversity patterns/metrics

and of system processes. As an example, in ecology,

as the name suggests, functional diversity, which is of-
ten characterized by statistical metrics or distribution

of functional groups, is directly correlated with various

ecosystem processes [45]. During exploratory analysis,

the queries on diversity patterns usually serve as pre-

requisites for understanding diversity processes. This

kind of “workflow” is represented as horizontal dashed

arrows in the task taxonomy (Fig. 17).

4.3 Low-level Analytical Operations

Data-centric queries in the analyst’s mind are finally re-

alized with low-level operations to be fulfilled by visual-

analysis tools (Fig. 17, bottom blue level). All Amar et

al.’s operations [2] described in Table 3 are relevant

to diversity analysis. Note that secondary operations

can be combined to accomplish a primary operation,

which is denoted as bold texts in Fig. 17. For instance,

characterizing distribution of a data subset may require

filtering data first, and then sorting the data.

The ten original operations [2] are not comprehen-

sive. Guided by the alignment framework of diversity

concerns, we introduce three additional low-level oper-

ations: Characterize Hierarchy, Annotate, and Fit Mod-

els/Metrics (Table 3). Hierarchy characterization is re-

quired when users inspect taxonomic diversity of species

(or their equivalents) (Consideration 2, Section 2.2.2).

Annotation is useful when analysts wish to note or

distinguish among attributes or observations based on
their common or user-defined characteristics (Consid-

eration 1, Section 2.2.1). For example, management re-

searchers may wish to annotate the ’age’ attribute as

variety in one case and as separation in other cases. Fit-

ting Models/Metrics represents a scenario in which an-

alysts, given a set of observations, may want to fit a sta-

tistical or computational model to those observations—

usually in the forms of visual indicators. For example,

they may want to fit a straight line to a set of obser-

vations in a scatter plot to represent linear correlation

(Fig. 15); they may want to see some visual indicator

to represent separation among clusters of observations

(Fig. 11 and Fig. 12).

4.4 Summary of the Task Taxonomy

Guided by the alignment framework and existing generic

task taxonomies, our proposed taxonomy aims to cap-

ture all possible queries and operations in the process of
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exploring diversity data. The reasoning process of the

analyst may start with high-level queries on scientific

phenomena such as “what are the functional diversity

patterns?”, followed by low-level analytical operations

such as “characterize clusters of the observed data”.

The data behavior characterization in turn enables the

analyst to understand and make inferences about the

underlying scientific phenomena. Understanding the rea-

soning process as well as the specific queries and oper-

ations on diversity data is a critical requirement for the

design of visual-analysis tools.

5 Discussion

This work presents the first cross-disciplinary synthesis

study targeting exploratory analysis of diversity. Our

study provides two contributions: (1) understanding of

the diversity concerns aligned across the analyses of

macrobiotic species, microbial taxa, and workgroup di-

versity (RQ1) and (2) a unified taxonomy of analytical

tasks guiding the design of visual-analysis tools to ad-

dress these concerns (RQ2). Here we extend our discus-

sion on (1) validation and refinement of the alignment

framework with subject-matter experts, (2) limitations

and future work, and (3) implications for diversity stud-

ies and design of visualizations.

5.1 Formative Evaluation of the Alignment

Framework with Subject-Matter Experts

Feedback from experts is critical to ensure the align-

ment framework fulfills its intended purpose of char-

acterizing the diversity analysis problem (RQ1). Our

formative evaluation of the framework consists of two

phases: (1) a pilot phase with our two domain expert

collaborators and (2) a survey study with other exter-

nal experts. To stimulate our discussion, we adopt the

following feedback criteria [1] (Table 4): comprehensive-

ness, ease of use, precision, usefulness, discoverability,

and alignability of the framework.

Pilot Feedback. In developing the alignment frame-

work, we have set up multiple face-to-face and email

discussions between two visualization researchers and

two domain expert collaborators, who co-author this

paper: one ecologist and one microbiologist/microbial

ecologist. The aims are to understand their informa-

tion needs and to collect feedback on early thoughts on

the framework before a full survey study.

Our ecologist (Jones) was instrumental in helping

validate the analysis of species diversity as well as re-

fine the overall framework vocabulary and presentation

. Discussing the framework’s comprehensiveness, she

pointed out niche separation and dominance in ecol-

ogy as potentially parallel concepts to separation and

disparity in organizational management, respectively.

With regards to the usefulness criterion, she requested

compelling examples to demonstrate the operational-

izations of diversity concepts as well as their align-

ment across the three areas. We responded with exam-

ples of visualization and introduced the three consider-

ations for data behavior characterization. Interestingly,

after seeing how multiple stacked histograms are used

to communicate subgroups and faultlines in organiza-

tional management (Fig. 11), the ecologist immediately

requested the same chart for comparison of the struc-

ture of different groups of moths from the moth data

set (Fig. 13). We take that request as a positive sign

that the framework helped the ecologist discover new

diversity concerns she had not thought of, such as sep-

aration between clusters of observations or functional

groups.

The discussions with our microbiologist/microbial

ecologist (Colwell) suggested that between microbial

diversity and macrobiotic species diversity, while there

are some parallels in analysis approach, there also ex-

ist distinctions in information needs and characteristics

of diversity data. Specifically, microbial diversity anal-

ysis emphasizes exploration of genomic information to

identify previously unknown microorganisms and ulti-

mately, to understand their functionality. The classifi-

cation is usually performed in the data pre-processing

stage (Fig. 1), using DNA extracting and sequencing

[58, 15]. Microbial genomic information is often rich in

terms of representative OTUs but can be limited in

terms of the number of biological samples and the num-

ber of attributes (e.g., spatial and temporal) because in

many conditions such as subsurface environments, sam-

pling remains a challenge. However, surface microbial

communities such as in soils, waters, humans, and ani-

mals can be sampled much more frequently as in the Mi-

crobiVis example [13]. In addition, the costs of genomic

analyses have decreased dramatically, making it possi-

ble to analyze more samples. On the other hand, species

diversity deals with already known species and their

well-understood characteristics, e.g., taxonomic classi-

fication, food types, habitats, so its analysis emphasis

is really on the diversity patterns of multiple observa-

tions and their causes and consequences, providing that

ecologists have access to larger number of observations

and other environmental factors.

In all, our microbiologist assessed that the align-

ment framework was useful for cross-comparison of di-

versity studies. It helped him discover new diversity

concerns such as diversity faultlines and corresponding

techniques such as multiple stacked histograms. It is
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Table 4 Criteria and corresponding questions for validation and refinement of the alignment framework of diversity concerns.
The criteria are adopted from Ahn et al. [1].

Feedback Criterion Question
Comprehensiveness Are any concerns missing from the framework?
Ease of Use Is the framework easy to understand?
Precision Does the framework describe precisely the concerns and the corre-

sponding data behaviors?
Usefulness Can the framework be used by experts to organize and cross compare

their studies?
Discoverability Does the framework help experts discover new concerns they had not

thought of?
Alignability Would the experts think concerns could be aligned across the three

fields of interest?

Fig. 18 Boxplot of responses from nine domain-experts to each of the six Likert-style feedback criteria/statements (Table 4).
The experts were asked to indicate their level of agreement on a scale of 1 (Strongly Disagree) to 5 (Strongly Agree).

also encouraging to hear his comment that the future of

microbiology would benefit from a similar species diver-

sity analysis, and essentially from the alignment frame-

work, providing that microorganisms are well classified

and more data replicates are available. He also recom-

mended related work on microbial diversity that we ref-

erence in this work.

Survey Study with Other Experts. After the pilot

phase, we further evaluated the framework in a survey

study involving nine domain experts whose expertise

was in species diversity (four), both species and micro-

bial diversity (one), and workgroup diversity (four). All

of them, who authored published research work cited in

this paper, volunteered to participate in the survey in

response to our emails soliciting their feedback. They

answered the survey after reading a technical report

presenting the framework.

The evaluation survey consisted of six Likert-style

statements (Table 4), in which the experts were asked

to indicate their level of agreement on a scale of one

(Strongly Disagree) to five (Strongly Agree), and two

open-ended questions: (1) if you disagree with any of

the above statements, please explain your reason and

(2) please comment on any aspects concerning the frame-

work or the technical report.

The survey results were encouraging (Fig. 18). Most

of the experts strongly agreed or agreed on the frame-

work’s comprehensiveness (seven out of nine), ease of

use (six), precision (seven), usefulness (seven), discov-

erability (six), and alignability (seven). Several experts

expressed their enthusiasm for the work, especially its

novelty, necessity, and timeliness: “I really like how you

bring together three so different disciplines in the first

cross-disciplinary synthesis study about diversity. ”; “It’s

[the framework] looking great! I’m so happy that you’re

tackling this challenge–it’s sorely needed”; and “ The

subject is also very timely.”

Nevertheless, some experts also pointed out several

limitations of the work. With respect to comprehen-

siveness of the framework, one mentioned the lack of

diversity components concerning data acquisition and

pre-processing, which we elaborate in the next subsec-

tion. Commenting on the role of visual exploration in

diversity analysis, one expressed concern about the is-

sue with post-hoc analysis—that is, the use of visual-

ization to look for patterns that were not specified a

priori . We respond to that comment that visual explo-
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ration, which is only part of a larger analysis process

(Fig. 1), may prompt further statistical tests (that take

into account post hoc analysis) or graphical inference

tests [71], additional data collection, and experiments.

We also argue that traditional statistical tests may not

be able to uncover unexpected data behaviors such as

shapes of distribution, outliers, or separation of clusters

of interest to diversity analysis. Complementing statis-

tics, visualizations are particularly effective for those

tasks.

In addition to critical comments, the experts also of-

fered suggestions for improvement. One pointed out re-

lated domains that may share common diversity analy-

sis such as community detection among social networks

and additional analysis techniques such as Bayesian ap-

proaches for workgroup data. Several of them suggested

other related work as well as minor changes for the

terms used in Table 1, such as correlation vs. regression

and taxonomy vs. ontology vs. typology. We considered

them carefully, followed up with the corresponding ex-

perts via email if necessary, and incorporated them into

the framework.

Finally, in addition to the interaction with domain

experts, this manuscript draws upon our lessons from

designing and evaluating diversity visualizations [47–

50]. Our previous publications describe and discuss our

in-depth and long-term interdisciplinary collaboration

processes in more detail.

5.2 Limitations and Future Work

This work emphasizes the exploration stage of the anal-

ysis process (i.e., hypothesis generation), following data

acquisition and pre-processing stages and preceding fur-

ther hypothesis testing, as illustrated in Fig. 1. Other

stages may involve additional diversity concerns and

corresponding analytical tasks. For example, microbe

samples could be pre-classified into OTUs at different

taxonomic levels using the Ribosomal Database Project

(RDP) [11] and the process could benefit from dedi-

cated analytical tasks such as dimensionality reduction

using principal component analysis (PCA) and Non-

metric multidimensional scaling (NMDS) [51]. In an-

other example, data acquisition (or sampling) plays a

critical role because it affects diversity patterns and

processes. Species richness, for instance, tends to in-

crease when the number of samples increases [36]. The

dependence of species richness on sample size can be re-

vealed by dedicated analytical tasks such as construct-

ing and comparing species accumulation curves or rar-

efaction curves [36]. Extending this work beyond the

exploration stage deserves deeper investigation in fu-

ture work.

To keep our proposed taxonomy concise, we excluded

analytical tasks necessary for collaborative exploration.

For instance, analysts may wish to keep track of their

findings and share their findings with other users [49].

These tasks are generic and relevant to almost all sci-

entific analysis workflows [22].

Our literature review examines only three areas,

ecology, microbiology, and organizational management

because understanding diversity patterns and processes

are fundamental problems in these areas [19, 36, 43, 15,

32, 20, 5]. Additionally, the three areas cover the di-

versity of multivariate objects at three encompassing

scales: microbial taxa (ecology/microbiology), species

(ecology), and human beings (organizational manage-

ment). Finally, although adopting somewhat separate

vocabularies, interestingly, the three areas share many

common characteristics and analysis goals as synthe-

sized throughout this paper.

However, diversity represents itself in many other

fields. For example, chemists consider the similarity/diversity

of molecular models in exploring the multitude of de-

signs generated by simulation [29]; scholars study lan-

guage diversity in order to understand societies [42]. All

of these fields are advancing and new findings and anal-

ysis techniques may prompt revision of the framework

and the taxonomy. Alternatively, we may have to create

new ones for specific fields.

5.3 Implications for Diversity Studies

The alignment framework aims to support experts in

adopting new diversity concerns within their own field

of expertise or across fields. In addition to the examples
presented in Section 2 , we discuss several other usage

scenarios here.

The first scenario demonstrates how the three types

of diversity as variety, separation, and disparity in sepa-

rate attributes could be extended to interaction among

multiple attributes (Table 1, Rows 3 and 4). In fact,

depending on the types of attribute under investiga-

tion, experts studying workgroups already conceptual-

ize variety-based, separation-based, and disparity-based

faultlines and subgroups, as introduced by Carton and

Cummings [9]. For example, composition of disparity

attributes such as pay, rank, and decision power may

form disparity-based faultlines and subgroups in a team

[9]. The same conceptualization might be applied to

functional diversity in ecology, depending on the types

of examined functional traits. For example, composition

of resource-based functional traits for plants such as nu-

trient consumption, tree density, body size could create

disparity-based functional groups in the examined unit

of study.
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Table 5 Data behaviors of interest to diversity analysis and corresponding typical visual representations.

Data
Behavior

Examples of
Diversity Concern

Data Charac-
teristics

Typical visual representations (with
example citations)

Distributions
Variety and abundance
in separate attributes

Univariate

Boxplot [64]
Histogram [36]
Stacked Bar Chart [8]
Rank-abundance Curve [69,36]
Cumulative Frequency Curve [36]

Multivariate
2D Scatter plot and its variants (2D
Heatmap, Fluctuation Diagram)
Multiples of univariate representations
(e.g., Boxplot [64], Histogram, Scatter plot
matrix [10] , Diversity Map [48])

Distributions
+ Clusters

Functional diversity;
Subgroups/ Faultlines

Bivariate
Scatter Plot [54]
Mosaic Plot [21]

Multivariate
Multiple Stacked Histograms [50]
Scatter Plot Matrix [50]

Distributions
+ Hierarchies

Taxonomic Diversity
(Richness+Evenness)

Multivariate
Treemap [56,25]
Sunburst, Icicle [60]

Hierarchies Taxonomic Diversity
(Richness)

Multivariate Node-link diagram and its variants (e.g.,
Tree [34], Dendrogram [7])

Correlations Processes of Diversity

Bivariate Scatter plot or Line Chart [46,6]

Multivariate
Scatter Plot Matrix [10]
Parallel Coordinates [27,13]
Parallel Sets [31]

The second usage scenario extends our discussion

on the alignability between diversity faultlines in or-

ganizational management and functional diversity in

ecology. Across the two areas, it would be informative

to cross compare statistical metrics [45, 46, 62] and vi-

sual representations. For example, while the faultline

metric used in the baseball data (Fig. 10) does not in-

volve a hierarchy of clusters [5], hierarchical clustering

algorithms such as the FD metric in ecology [45] could

potentially be adopted and vice versa. Other modern

cluster algorithms from the field of data mining such as

Affinity Propagation [14] could be potentially utilized.

Further, configuration of attribute weighting is another

unique feature of diversity faultlines potentially appli-

cable to ecological functional diversity. For example,

management researchers studying the impact of fault-

lines in workgroups may ask how many years of age

difference between team members should be considered

as equally important as a difference in gender or eth-

nicity [61]. Ecologists studying functional diversity may

adopt similar configuration of the relative importance

of functional traits [46], depending on the correspond-

ing system processes of interest.

The third usage scenario discusses the missing com-

ponent of taxonomic diversity in workgroup diversity

(Table 1). To our understanding, experts studying work-

groups have not yet examined hierarchical classification

of attributes. That missing link may suggest a potential

research direction. For example, functional expertise of

team members is potentially hierarchical (e.g., ecology

and microbiology majors are closely related since they

are classified under life sciences) and the hierarchical

information can be taken into account during investi-

gation of faultlines and subgroups.

5.4 Implications for the Design of Visualization

Use of the alignment framework and the task taxon-

omy also has implications for the design of visualiza-

tions. Specifically, it provides visualization designers

and researchers with a common vocabulary and consid-

erations for designing and evaluating different visual-

analysis tools targeting diversity data. We expect a set

of base visualization techniques and tools for illuminat-

ing various components of diversity and providing new

ways of looking at data across fields.

Typical Visual Representations. Following the three

considerations and examples of visualization presented

in the Alignment Framework Section, Table 5 is a useful

list of typical visual representations that are well-suited

to communicating the data behaviors of interest con-

cerning diversity. The techniques, which by no means

represent an exhaustive list, are suggested based on the

understanding of their pros and cons from the field of

information visualization [47,48,50]. This classification

would serve as a useful reference for visualization de-

signers targeting specific diversity concerns. A thorough

survey of various existing visualization techniques for

general purpose can be found in [30].
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Fig. 19 Samples from two oral bacterial populations visualized using Parallel Coordinate Plot (PCP) supported by the
MicrobiVis tool [13]. Vertical axes represent a set of Genus OTUs of interest to the analyst; each of the polylines represents a
sample that intersects each genus axis at the value corresponding to the abundance of the genus detected in the sample. Distinct
colors are used to differentiate the two populations: group 1 and group 2. Red and blue arrows indicate some interesting genera
identified by the analyst. For example, the first blue arrow from the left marks Genus 4 in which group 1 and group 2 are
separated with respect to abundance. Image reused with permission from Fernstad et al. [13]. Copyright c©2011 IEEE.

Fig. 20 An alternative design to the PCP in Fig. 19 in which stacked histograms are selectively overlaid along the axes to
convey the distribution of clusters as well as separation among clusters across the attributes of interest. For demonstration
purpose, Genus 4 axis—marked by the first blue arrow from the left—is re-drawn with stacked histograms. We argue that the
stacked histograms make separation between the two groups of microbe samples within Genus 4 stand out: while all samples
of group 1 contain low abundance of Genus 4, most of the samples of group 2 contain higher abundance of Genus 4. We adapt
the Fig. from Fernstad et al. [13]. Original Figure c©2011 IEEE.

This tabulation (Table 5) could be extended to in-

clude techniques targeting diversity in space and time.

Recall that the three considerations suggest that if time

and space are involved, the techniques should support

users to explore how the data behaviors of interest (e.g.,

summary statistics, distributions, clusters, and/or hier-

archies) vary over time and space. To communicate spa-

tial distributions or clusters in univariate data, a geo-

graphical map with an additional encoding (e.g., a heat

map) is widely used. However, visualizing data behav-

iors of multivariate data on a map remains a challenge.

Potential solutions include overlaying other representa-

tions on a geographical map or alternatively, presenting

geographical maps and other representations in sep-

arate windows connected by interactions [3]. On the

other hand, to convey how the data behaviors of inter-

est vary over time, one possible solution is to employ

multiple snapshots of visual representations—for exam-

ple, multiple histograms—one for each time point. Al-

ternatively, animation of visualization states over time

may potentially be useful. Andrienko and Andrienko [3]

present a thorough investigation of exploratory analysis

of spatial and temporal data in their book.

Assessment of existing visual-analysis tools. In

addition to guiding the invention of future visualiza-

tions, the three data behavior characterization consid-

erations (Sections 2.2 and 2.3) could be used to assess

existing techniques and tools. For example, consider the

MicrobiVis tool [13], which employed parallel coordi-

nate plot (PCP)—among other techniques—to convey

the separation between two groups of microbial samples

across multiple OTUs (Fig. 19). PCP is well suited to

make the data observations visible as well as to con-

vey the correlation between two neighboring attribute

axes [27] (Table 5). However, we argue that the choice

of PCP does not support Consideration 2—PCP is not

effective in supporting users in comparing the distri-

butions and separation of clusters across multiple at-

tributes [50]. Fundamentally, a more effective design

should start with synotic tasks in mind, as opposed

to elementary tasks. Fig. 20 presents an alternative de-

sign in which stacked histograms are selectively overlaid

along the axes to convey the distribution of clusters as

well as separation among clusters across the attributes

of interest.
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6 Conclusions

Ecologists are increasingly concerned about changes in

diversity patterns of species communities and how they

influence ecosystem functioning and stability. However,

ecologists may not be aware of statistical and visual

analysis techniques in other fields, such as organiza-

tional management, that may help improve their own

understanding. Reciprocally, understanding concerns and

analysis techniques of diversity in ecosystems may widen

the perspectives of researchers who study diversity in

human organizations. Aiming to connect that missing

link, this interdisciplinary work abstracts diversity con-

cerns across the analyses of species diversity, micro-

bial diversity, and workgroup diversity in an alignment

framework and offers an operationalization of these con-

cerns in terms of data behaviors of interest and com-

mon analytical tasks. Subject-matter experts and tool

designers may take advantage of this work to find a

common ground for the diversity analysis problem. We

expect this work will help guide the evaluation and re-

finement of existing visualization techniques as well as

the invention of future ones. We also anticipate fur-

ther discussions regarding validation and amendment

to both the alignment framework and the unified task

taxonomy.

Acknowledgements The authors wish to thank the subject-
matter experts who participated in the survey study and pro-
vided valuable feedback on the manuscript. Support for this
research was provided by National Science Foundation fund-
ing to the H.J. Andrews Long-term Ecological Research pro-
gram (NSF 0823380) and ongoing U.S. Forest Service support
to the H.J. Andrews Experimental Forest.

References

1. Ahn, J., Plaisant, C., Shneiderman, B.: A task taxon-
omy for network evolution analysis. IEEE Transactions
on Visualization and Computer Graphics 20(3), 365–376
(2013)

2. Amar, R., Eagan, J., Stasko, J.: Low-level components of
analytic activity in information visualization. In: IEEE
Symposium on Information Visualization, pp. 111–117.
IEEE (2005)

3. Andrienko, N., Andrienko, G.: Exploratory analysis of
spatial and temporal data. Springer Berlin, Germany
(2006)

4. Begon, M., Townsend, C.R., Harper, J.L.: Ecology: from
individuals to ecosystems. Wiley-Blackwell (2005)

5. Bezrukova, K., Jehn, K.A., Zanutto, E.L., Thatcher,
S.M.: Do workgroup faultlines help or hurt? A moder-
ated model of faultlines, team identification, and group
performance. Organization Science 20(1), 35–50 (2009)

6. Bezrukova, K., Spell, C.S., Perry, J.L.: Violent splits or
healthy divides? Coping with injustice through faultlines.
Personnel Psychology 63(3), 719–751 (2010)

7. Briggs, B., Pohlman, J., Torres, M., Riedel, M.,
Brodie, E., Colwell, F.: Macroscopic biofilms in fracture-
dominated sediment that anaerobically oxidize methane.
Applied and environmental microbiology 77(19), 6780–
6787 (2011)

8. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger,
K., Bushman, F.D., Costello, E.K., Fierer, N., Pena,
A.G., Goodrich, J.K., Gordon, J.I., et al.: QIIME allows
analysis of high-throughput community sequencing data.
Nature methods 7(5), 335–336 (2010)

9. Carton, A.M., Cummings, J.N.: A theory of subgroups
in work teams. Academy of Management Review 37(3),
441–470 (2012)

10. Cleveland, W.S., McGill, R.: Graphical perception: The-
ory, experimentation, and application to the development
of graphical methods. Journal of the American Statistical
Association 79(387), 531–554 (1984)

11. Cole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Far-
ris, R., Kulam-Syed-Mohideen, A., McGarrell, D., Marsh,
T., Garrity, G., et al.: The Ribosomal Database Project:
improved alignments and new tools for rRNA analysis.
Nucleic acids research 37(suppl 1), D141–D145 (2009)

12. Dıaz, S., Cabido, M.: Vive la difference: plant functional
diversity matters to ecosystem processes. Trends in Ecol-
ogy & Evolution 16(11), 646–655 (2001)

13. Fernstad, S.J., Johansson, J., Adams, S., Shaw, J., Tay-
lor, D.: Visual exploration of microbial populations. In:
IEEE Symposium on Biological Data Visualization (Bio-
Vis), pp. 127–134. IEEE (2011)

14. Frey, B.J., Dueck, D.: Clustering by passing messages
between data points. Science 315(5814), 972–976 (2007)

15. Fuhrman, J.A.: Microbial community structure and its
functional implications. Nature 459(7244), 193–199
(2009)
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